An In-Depth Look at Office-Based Laryngeal Procedures

Disclosures

- Nothing to disclose
Change

1. Discovery/Innovation

2. Promotion

3. Recalibration/Acceptance

Development of **Direct** Laryngoscopy

- Green (1803 – 1866)
 - “Father of American Laryngology”
 - Studied in Europe in 1838
 - Published 3 textbooks on diseases of the air passages
 - Instrumented the larynx and trachea without visualization
 - “…passed a probang made of whalebone and tipped with a tiny sponge soaked in silver nitrate through the larynx and into the trachea to treat almost all maladies of the air passages.”
 - The patient had to be accepting and the probang needed to be curved correctly
 - Controversial technique not easily replicated
 - Disregarded by contemporary practitioners
 - “…defense mechanism of the larynx were too great to let such a a thing happen except by accident….”

Charles Snyder, Laryngoscope 1975
Development of Direct Laryngoscopy

- Green (1803 – 1866)
 - Descriptions of direct instrumentation – 1858
 - After Garcia had demonstrated autoscopy
 - First laryngoscopes brought to the US
 - Blade like instrument to retract the tongue in one hand
 - Curved forceps to remove polyps in the other hand

General Technique of Rigid Endoscopy

- Originally intension
 - Esophageal examination
 - Tracheal examination was believed impossible secondary to the "defenses of the larynx"

- Local anesthesia – “in office”

- Patient seated and then reclined after procedure initiated
 - Required 2 assistants
 - Head hanging – extension - extension
Development of Direct Laryngoscopy

- Topical anesthesia – 1850
 - Allowed easier passage through the larynx
 - Bronchoscopy became more reproducible and applicable

- Kirstein – 1895
 - “….if the scope intended for the esophagus accidentally slipped into the larynx and trachea an excellent view could be obtained.”
 - Reproducible method
Forms of Direct Laryngoscopes

- **Tubes**
 - Originally used by Kirstein
 - Modified from esophagoscopes
 - Intended to fulcrum off the maxillary dentition

- **Blades**
 - Developed by Kirstein to prevent fulcrum
 - Used in the office
 - Contemporary “intubating” laryngoscope
Forms of Direct Laryngoscopes

- **Tubes**
- **Blades**
 - Developed by Kirstein to prevent fulcrum
 - Used in the office
 - Contemporary “intubating” laryngoscope
 - Position – surgeon stood in front or behind the patient

Direct Laryngoscopy – General Anesthesia

- **Laryngoscopy**
 - Began as an office-based procedure
 - An accidental outcome of esophagoscopy

- **General anesthesia – 1900’s Ether**
 - Brought uncomfortable direct laryngoscopy into the OR
 - Suspension devices
 - Killian – 1912 “blade-like”
 - Lewy – 1950 “suspension for tubed laryngoscopes

To fulcrum or not to fulcrum
To fulcrum or not to fulcrum.....

Fulcrum Suspension
Contemporary Technical Developments

- Light
 - Proximal light source
 - Original endoscopists used external light directed down the shaft of the instrument
 - Czmerak (1870) first to add artificial light for indirect laryngoscopy
 - Killian and Lynch (1910) “head lamp” external light source for direct endoscopy

- Distal light source
 - Jackson (1904) “electric bulb”
 - Halogen
 - Xenon gas
Contemporary Technical Developments

- Fiberoptic capability
 - Baird (1927)
 - Light and image transmitted through glass fiber
 - "clad fiber" – glass fibers with high refractive index surrounded by fibers with low refractive index
 - Light is easier to transfer than image
 - Multiple fibers in any arrangement
 - Image transmission –
 - Fibers must be arranged in parallel
 - 5 micron fiber size to compare with 35mm photography

- Rod lens telescope
 - Harold Hopkins (1950)
 - Karl Storz (1960)
 - Fiberoptic light transmission
 - Rod lens for image transmission
Tube Within a Tube Concept

- Light is carried through a second tube within the tube for visualization
 - Indirect
 - Direct

Contemporary Technical Developments

- Flexible Fiberoptic Image Transmission
- Hirose and Sawashima (1968)
 - "Machidascope"
- Clinical trials (1975)
 - Easy to perform
 - Well tolerated
 - Equal in diagnostic capabilities to other forms of indirect laryngoscopy
Contemporary Technical Developments

- Miniaturized CCD image transmission (1990's)
 - Light supplied by fiberoptic light transmission
 - Distal chip scope

Contemporary Technical Developments

- Distal chip scopes with channels for instrumentation
Summary

- Laryngoscopy for instrumentation of the larynx started as an in-office procedure as an accidental outgrowth of esophagoscopy
 - We did not have adequate anesthesia
 - With improvements in GA Laryngoscopy was taken to the OR

- We take light sources for granted
 - Tube within a tube concept

- Improvements in fiberoptics and the development of distal chip scopes with working channels small enough to pass through the nose improved patient comfort and visualization

Summary

- As rigid direct laryngoscopy was an outgrowth of rigid direct esophagoscopy, Fiberoptic and flexible laryngoscopy was an outgrowth of flexible esophagoscopy
 - Larger tubes fit through the mouth with patient sedation
 - Need proof of concept:
 1. Smaller scopes where as good as larger diameter scopes
 2. Patients can reliably be instrumented without sedation if the scope is passed through the nasal cavity
The Birth of Contemporary Interventional Transnasal Laryngoscopy Innovation

- Began with transnasal esophagoscopy
 - Advantages over transoral route
 - Does not require sedation
 - Patient preference
 - Disadvantages over transoral route
 - Patients are unsedated (they can still talk)
 - Smaller scope diameter - reduced ability to instrument?

Historical Background Promotion

- Medical College Wisconsin 1996 - GI
 - Comparison unsedated TNE with sedated EGD in 24 patients
 - Sensitivity of unsedated TNE 89%
 - Specificity – 97%
 - Patient safety – without complications
 - Sedation
 - Nasal
 - Patient tolerance – reported as less stressful than sedated EGD (p < 0.05)
Historical Background

- Columbia University 2001 - OHNS
 - Evaluation of dysphagia in 14 patients
 - Patient discomfort 2/10
 - No complications
 - Findings
 - Zenker's
 - Patulous esophagus
 - Stricture

Transnasal Esophagoscopy versus Conventional Upper Endoscopy

- Patient acceptance/comfort
- Accuracy of findings
Transnasal Esophagoscopy versus Conventional Upper Endoscopy

- Cleveland Clinic Foundation 2005 (GI)
 - Patients underwent both unsedated and sedated studies
 - Unsedated studies
 - Transnasal
 - Transoral
 - Diagnostic accuracy of endoscopy using the 4-mm video endoscope was similar to that of standard endoscopy
 - Patient tolerance
 - Preprocedure anxiety scores (29 vs. 42.5, P = 0.021)
 - BMI - 31.5 kg/m² vs. 28 kg/m², P = 0.029
 - Patients preferred transnasal to transoral

Transnasal Esophagoscopy versus Conventional Upper Endoscopy

Accuracy of Findings

- Medical College of Wisconsin – 2002 (GI)
 - TNE for management of Barrett's Esophagitis (n = 32)
 - Patients underwent both unsedated TNE and sedated UEGD
 - Similar results with conventional upper endoscopy
 - Histological grade
 - Identification of change
Transnasal Esophagoscopy versus Conventional Upper Endoscopy

Accuracy of Findings

- Medical University of South Carolina – 2002 (GI)
 - Ultrathin (3.1 mm scope) TNE versus conventional scope (n=181)
 - Patients underwent both unsedated TNE and sedated UEGD
 - Findings
 - Sensitivity for detecting columnar lined esophagus - 94%
 - Sensitivity for all esophageal findings - 87%

- Patient tolerance
 - Evaluated by endoscopist - similar for both procedures
 - 95% of the patients undergoing unsedated BPE were willing to have the procedure repeated under similar circumstances.

We can do this!

Recalibration

- Just because you can do something, it doesn’t mean you should - John M. Lore Jr.

- But, what are the:
 - Indications
 - Benefits
 - Costs
Case 1

- 74 year old author, professor, public speaker

- 6 month history of gradual voice change
 - Rough – cannot focus voice
 - Increased effort
 - Difficult to be heard

CASE 1 – 3RD RECURRENCE
Case 1 – Further Management

- Continue ablation

- Options?
 - Further MDL with ablation
 - Cidofovir
 - Celebrex
 - TNFE with ablation through fiber laser delivery system
 - KTP
 - PDL
 - Waveguide system

Room Preparation

- Informed consent

- Patient placed in seated position

- Topical anesthesia applied
 - Nasal cavity for all procedures
 - Larynx and trachea for airway intervention

- Available airway intervention
Patient Preparation

- **Topical anesthesia**
 - Sprayed into nasal cavity
 - Anesthetic – Lidocaine 4%
 - Decongestant – Neosynephrine 0.5%
 - Dripped into larynx and trachea for airway interventions only
 - Lidocaine 2 - 4%
 - Other methods
 - Inject into trachea

Laryngeal/Tracheal Anesthesia

- Patient seated with head up at 90°
- Anesthetic dripped through working channel
Patient Preparation Videos

Application of topical anesthesia

Instrumentation

- Laser fibers
 - CO₂
 - PDL
 - KTP
 - Ho:YAG
 - Thulium
KTP Laser

- Nd:YAG crystal (1064 nm) that is frequency doubled with a KTP crystal to produce a laser beam of 532 nm

- Current KTP lasers are Q-switched with pulse durations of 1 to 100 msec, and the longer pulse durations may help reduce purpura

- Used to treat superficial facial telangiectasias

Absorption Curve for Oxyhemoglobin
KTP – Theoretical Tissue Interactions

- 532 nm
- 15ms pulse length 2 pulses per second
- 0.3 J per pulse (0.015s x 20 watts)
- 2 Hz repetition rate
- 3 mm from tissue
- Blood Absorption 226 1/cm
- Tissue Absorption 2.2 1/cm
1 Pulse Delivered

0.5 seconds to cool

4 Pulses Delivered

0.5 seconds to cool
Case 1 – TNFE with KTP Ablation

Instrumentation

- Sheaths to protect channel
KTP – Contact Mode

After 4 pulses with 0.5 seconds between each pulse

Theoretically Tissue Interaction Pulsed KTP

Laser Settings
- Power 35 watts
- 15 mmsec pulse length
- 2 pulse per sec
KTP - Clinical Results

Case 1 – TNFE with KTP Ablation

Courtesy of Michael Pitman
Case 3

- 52 year old male
- Remote history of smoking
- 1 year of increasing dysphonia
- No other medical problems
- Video

Instrumentation

- Cup forceps
 - 1.8 mm
 - Serrated
Case 3

- Management options

- Imaging CT versus MRI
 - Cartilage involvement - extensive

Case 4

- 42 year old male
- Father of 2 young children
- 3 year history of loss of ability to sing to children at night
- Speaking voice is rough and cracks if he is not careful
- Notes vocal fatigue
- No events noted at onset

- Vocal history
 - Sang in college Glee Club
 - No history of formal training

OHNS Website: http://ohns.ucsf.edu
Case 4

- Management options
- Patient vocal demands/desires
 - What if patient says…….

In-office Medialization
Routes of Injection

- Cricothyroid Membrane
- Transcartilagenous
- Thryohyoid
Trans-Thyroid Cartilage Technique

- Topicalize nasal cavity and larynx
- Needle passed through thyroid cartilage at level of VF
- Movement of needle tip shows location in VF
- Inject under flexible scope visualization

Potential Resting Positions for Injected Substances

Within TA Muscle

- Lateral
- Intermediate
- Medial
Potential Resting Positions for Injected Substances

Within Vocal Ligament

Just Deep to the Ligament

Reinke's Space

Favorable Resting Positions for Injected Substances

Lateral

Intermediate

Medial
Case 7

- Injection
- Immediately post
- 2 months post

Thank you